

<u>Begül Bilgin</u>, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen

In a nutshell:

- A countermeasure against Higher-Order Differential Power Analysis (HO-DPA)

- A countermeasure against Higher-Order Differential Power Analysis (HO-DPA)
- Ideas from secret sharing and multi-party computation

- A countermeasure against Higher-Order Differential Power Analysis (HO-DPA)
- Ideas from secret sharing and multi-party computation
- Can be applied to any algorithm

- A countermeasure against Higher-Order Differential Power Analysis (HO-DPA)
- Ideas from secret sharing and multi-party computation
- Can be applied to any algorithm
- Independent of technology, library, etc.

- A countermeasure against Higher-Order Differential Power Analysis (HO-DPA)
- Ideas from secret sharing and multi-party computation
- Can be applied to any algorithm
- Independent of technology, library, etc.
- Efficient

- A countermeasure against Higher-Order Differential Power Analysis (HO-DPA)
- Ideas from secret sharing and multi-party computation
- Can be applied to any algorithm
- Independent of technology, library, etc.
- Efficient
- Application to KATAN-32

Background

Differential Power Analysis & Its Countermeasures

$$\begin{array}{c} \text{Key} \longrightarrow \\ \text{In}_i \longrightarrow \\ \text{Algorithm} \end{array} \longrightarrow \\ \text{Out}_i \end{array}$$

DPA focuses on finding the secret using the relation between

DPA focuses on finding the secret using the relation between

- Instantaneous power consumption

DPA focuses on finding the secret using the relation between

- Instantaneous power consumption
- And intermediate results of the algorithm

Countermeasure can be

Countermeasure can be

- Limiting the usage of key

Countermeasure can be

- Limiting the usage of key
- Decreasing the SNR

Countermeasure can be

- Limiting the usage of key
- Decreasing the SNR
- Breaking the relation between the trace and (In_i, Out_i)

Countermeasure can be

- Limiting the usage of key
- Decreasing the SNR
- Breaking the relation between the trace and (Ini, Outi)

e.g. Masking

(x₁,y₁,z₁,...)

 $(x_1, y_1, z_1, ...)$ \oplus $(x_2, y_2, z_2, ...)$ =(x, y, z, ...)

Random input/output shares
Random intermediate values

d^{th} -order DPA $\rightleftharpoons d$ probing model

Lemma: Attack order in higher-order DPA corresponds to number of wires probed in the circuit (per unmasked bit).

d^{th} -order DPA $\rightleftharpoons d$ probing model

Lemma: Attack order in higher-order DPA corresponds to number of wires probed in the circuit (per unmasked bit).

 d^{th} -order DPA $\rightleftharpoons d$ probing model

<u>Lemma:</u> Attack order in higher-order DPA corresponds to number of wires probed in the circuit (per unmasked bit).

d^{th} -order DPA $\rightleftharpoons d$ probing model

<u>Lemma:</u> Attack order in higher-order DPA corresponds to number of wires probed in the circuit (per unmasked bit).

 d^{th} -order DPA $\rightleftharpoons d$ probing model

Lemma: Attack order in higher-order DPA corresponds to number of wires probed in the circuit (per unmasked bit).

Boolean Masking:

- #shares > d
Background - Higher-Order DPA

 d^{th} -order DPA $\rightleftharpoons d$ probing model

<u>Lemma:</u> Attack order in higher-order DPA corresponds to number of wires probed in the circuit (per unmasked bit).

Boolean Masking:

- #shares > d
- glitches reduce the security

Background - Higher-Order DPA

d^{th} -order DPA $\rightleftharpoons d$ probing model

Lemma: Attack order in higher-order DPA corresponds to number of wires probed in the circuit (per unmasked bit).

Boolean Masking:

- #shares > *d*
- glitches reduce the security

Such as:

Such as:

- (d=1) Threshold Implementations (ICICS'06)

Such as:

- (*d*=1) Threshold Implementations (ICICS'06)
 #shares > t (algebraic degree of S = t)

Such as:

(d=1) Threshold Implementations (ICICS'06)
#shares > t (algebraic degree of S = t)
Prouff & Roche (CHES'11) ~ BGW scheme

Such as:

(d=1) Threshold Implementations (ICICS'06)
#shares > t (algebraic degree of S = t)
Prouff & Roche (CHES'11) ~ BGW scheme

#shares > 2d

Properties & Requirements

Threshold Implementations (d=1)

Threshold Implementations (d=I)

Uniform input masking

Correctness

Non-completeness: Every function is independent of at least one input share.

Uniform input masking

Correctness

dth-order non-completeness: Combination of up to *d* functions is independent of at least one input share.

Uniform input masking

Correctness

 d^{th} -order non-completeness: Combination of up to d functions is independent of at least one input share.

How many shares are necessary?

Linear functions

Linear functions

• $S(x) = S(x_1) \oplus S(x_2) \oplus \ldots \oplus S(x_s)$

Linear functions

- $S(x) = S(x_1) \oplus S(x_2) \oplus \ldots \oplus S(x_s)$
- #shares (s) > d

Linear functions

- $S(x) = S(x_1) \oplus S(x_2) \oplus \ldots \oplus S(x_s)$
- #shares (s) > d

Nonlinear functions (a = S(x,y,z) = xy+z)

• More challenging

Linear functions

- $S(x) = S(x_1) \oplus S(x_2) \oplus \ldots \oplus S(x_s)$
- #shares (s) > d

Nonlinear functions (a = S(x,y,z) = xy+z)

• More challenging

•
$$s_{in} \ge td+1$$
 and $s_{out} \ge \begin{pmatrix} s_{in} \\ t \end{pmatrix}$

(algebraic degree of S = t)

Linear functions

- $S(x) = S(x_1) \oplus S(x_2) \oplus \ldots \oplus S(x_s)$
- #shares (s) > d

Nonlinear functions (a = S(x,y,z) = xy+z)

- More challenging
- $s_{in} \ge td+1$ and $s_{out} \ge \begin{pmatrix} s_{in} \\ t \end{pmatrix}$ (algebraic degree of S = t)
- First-order $s_{in} \ge 3$ input $s_{out} \ge 3$ output shares

Linear functions

- $S(x) = S(x_1) \oplus S(x_2) \oplus \ldots \oplus S(x_s)$
- #shares (s) > d

Nonlinear functions (a = S(x,y,z) = xy+z)

- More challenging
- $s_{in} \ge td+1$ and $s_{out} \ge \begin{pmatrix} s_{in} \\ t \end{pmatrix}$ (algebraic degree of S = t)
- First-order $s_{in} \ge 3$ input $s_{out} \ge 3$ output shares
- Second-order $s_{in} \ge 5$ input and $s_{out} \ge 10$ output shares

Two issues to solve in the system:

Two issues to solve in the system:

I. Increase of the number of shares when d>I

Two issues to solve in the system:

I. Increase of the number of shares when d>I

2. Input to the next nonlinear function must be uniform

Two issues to solve in the system:

I. Increase of the number of shares when d>I

2. Input to the next nonlinear function must be uniform

Two issues to solve in the system:

I. Increase of the number of shares when d>1

2. Input to the next nonlinear function must be uniform

Two issues to solve in the system:

I. Increase of the number of shares when d>I

2. Input to the next nonlinear function must be uniform

One solution: XOR some of the output shares

Two issues to solve in the system:

I. Increase of the number of shares when d>I

2. Input to the next nonlinear function must be uniform

One solution: XOR some of the output shares

In our paper:

- Uniform HO-TI of an AND/XOR gate
- Uniform second-order TI of quadratic 4-bit permutations

Application to a cryptographic algorithm & & Testing

Second-order TI of KATAN-32 & Leakage Detection Tests on SASEBO-G

KATAN-32

- 254-round block cipher
- 32-bit plain/cipher-text and 80-bit key
- Round keys are generated by an LFSR

Linear: $s \ge d+1$ Nonlinear: $s_{in} \ge td+1$ and $s_{out} \ge \begin{pmatrix} s_{in} \\ t \end{pmatrix}$

HO-TI of KATAN-32

	# of shares		
	Linear	Nonlinear	
		Sin	Sout
Unprotected	1	I	I
First-Order TI	3	3	3
Second-Order TI	5	5	10
Third-Order TI	7	7	21

Linear: $s \ge d+1$ Nonlinear: $s_{in} \ge td+1$ and $s_{out} \ge \begin{pmatrix} s_{in} \\ t \end{pmatrix}$

HO-TI of KATAN-32

	# of shares		
	Linear	Nonlinear	
		Sin	Sout
Unprotected		I	
First-Order TI	3	3	3
Second-Order TI	5	5	10
Third-Order TI	7	7	21

Linear: $s \ge d+1$ Nonlinear: $s_{in} \ge td+1$ and $s_{out} \ge \begin{pmatrix} s_{in} \\ t \end{pmatrix}$

HO-TI of KATAN-32

	# of shares			Area (GF)
	Linear	Nonlinear		Faraday Standard Cell Library
	Lincar	Sin	Sout	FSA0A C Generic Core
Unprotected		I	I	1002
First-Order TI	3	3	3	1720
Second-Order TI	5	5	10	2556
Third-Order TI	7	7	21	3539

Fix vs. random leakage detection test RNG is OFF to test the setup

Fix vs. random leakage detection test RNG is OFF to test the setup

1000 traces

Fix vs. random leakage detection test RNG is ON

Fix vs. random leakage detection test RNG is ON

Fix vs. random leakage detection test RNG is ON

Conclusion

- Countermeasure against HO-DPA
- Efficient TIs of KATAN-32
- Confirmed the claimed security using leakage detection tests
- Methods for second-order TI of quadratic 4-bit permutations

Thank You!

